Problem Set 10 Jason Starr Fall 2015 MAT 536 Problem Set 10

نویسنده

  • Jason Starr
چکیده

Problem 1.(The Mapping Cone is a Homotopy Limit and a Homotopy Colimit) Let A be an Abelian category. Let A● and B● be objects in Ch●(A). Let f ● ∶ A● → B● be a morphism in Ch●(A). For every object T ● of Ch●(A), a left homotopy annihilator to T ● is a pair (Q●, σ●) of a morphism Q● ∶ B● → T ● in Ch●(A) and a nullhomotopy (σn ∶ An → T n−1)n∈Z of Q● ○ f ●, i.e., for every n ∈ Z, Q ○ f = dn−1 T ○ σ + σn+1 ○ dA. For every object S● of Ch●(A), a right homotopy annihilator from S● is a pair (∆●, τ ●) of a morphism ∆● ∶ S● → A●[+1] and a nullhomotopy (τn ∶ Sn → B[+1]n = B)n∈Z of f ●[+1] ○ ∆●, i.e., for every n ∈ Z, fn+1 ○∆ = dn−1 B[+1] ○ τ + τn+1 ○ dS = −dB ○ τ + τn+1 ○ dS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stony Brook University Problem Set 2 Jason Starr Fall 2014 MAT 614 Problem Set 1

Homework Policy. Please read through all the problems. I will be happy to discuss the solutions during office hours. Problems. Problem 1. For a finite type, separated k-scheme X, recall the alternative definition of the subgroup Ratl(X) ⊂ Zl(X). It equals the subgroup generated by all pushforward classes, i∗[W0]− i∗[W∞], for all k-schemes W of pure dimension l + 1, and for all proper morphisms ...

متن کامل

Problem Set 4 Jason Starr Fall 2014 MAT 614 Problem Set 4

Problems. Problem 1. Let Y be a finite type, separated k-scheme. Let E be a locally free OY -module of rank r + 1. Let πE : PY (E)→ Y, φ : π∗E∨ → O(1) be a universal pair of a morphism to Y together with an invertible quotient of the pullback of E∨ (to help calibrate conventions, this is covariant in E with respect to locally split monomorphisms of locally free sheaves). Recall in the proof of ...

متن کامل

Stony Brook University Problem Set 3 Jason Starr Fall 2014 MAT 614 Problem Set

(a) Prove that there exists a (left-right) inverse σ(t) in K [[t]] to the image of λ(t) if and only if a0 is invertible in K. In this case, prove that the inverse σ(t) is unique. More generally, for every element a0− a1t+ . . . in K [[t]], prove that the element is invertible if and only if a0 is invertible in K, in which case the inverse is unique. (b) Assume that λ(t) ∈ K[t] has an inverse σ(...

متن کامل

PEIECWISE CONSTANT LEVEL SET METHOD BASED FINITE ELEMENT ANALYSIS FOR STRUCTURAL TOPOLOGY OPTIMIZATION USING PHASE FIELD METHOD

In this paper the piecewise level set method is combined with phase field method to solve the shape and topology optimization problem. First, the optimization problem is formed based on piecewise constant level set method then is updated using the energy term of phase field equations. The resulting diffusion equation which updates the level set function and optimization ...

متن کامل

Some Results about Set-Valued Complementarity Problem

This paper is devoted to consider the notions of complementary problem (CP) and set-valued complementary problem (SVCP). The set-valued complementary problem is compared with the classical single-valued complementary problem. Also, the solution set of the set-valued complementary problem is characterized. Our results illustrated by some examples. This paper is devoted to co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015